From discrete to continuum models of three-dimensional deformations in epithelial sheets.
نویسندگان
چکیده
Epithelial tissue, in which cells adhere tightly to each other and to the underlying substrate, is one of the four major tissue types in adult organisms. In embryos, epithelial sheets serve as versatile substrates during the formation of developing organs. Some aspects of epithelial morphogenesis can be adequately described using vertex models, in which the two-dimensional arrangement of epithelial cells is approximated by a polygonal lattice with an energy that has contributions reflecting the properties of individual cells and their interactions. Previous studies with such models have largely focused on dynamics confined to two spatial dimensions and analyzed them numerically. We show how these models can be extended to account for three-dimensional deformations and studied analytically. Starting from the extended model, we derive a continuum plate description of cell sheets, in which the effective tissue properties, such as bending rigidity, are related explicitly to the parameters of the vertex model. To derive the continuum plate model, we duly take into account a microscopic shift between the two sublattices of the hexagonal network, which has been ignored in previous work. As an application of the continuum model, we analyze tissue buckling by a line tension applied along a circular contour, a simplified set-up relevant to several situations in the developmental contexts. The buckling thresholds predicted by the continuum description are in good agreement with the results of stability calculations based on the vertex model. Our results establish a direct connection between discrete and continuum descriptions of cell sheets and can be used to probe a wide range of morphogenetic processes in epithelial tissues.
منابع مشابه
Discrete Element Modeling of Dynamic Compaction with Different Tamping Condition
Dynamic Compaction (DC) is a common deep compaction method that is usually used for densification of coarse-grained soils. Although traditional continuum-based models such as the Finite Element Method can be successfully applied for assessment of stress distributions or deformations induced by DC, they are typically not adequate for capturing the grain scale mechanisms of soil behavior under im...
متن کاملA Mechanistic Collective Cell Model for Epithelial Colony Growth and Contact Inhibition.
We present a mechanistic hybrid continuum-discrete model to simulate the dynamics of epithelial cell colonies. Collective cell dynamics are modeled using continuum equations that capture plastic, viscoelastic, and elastic deformations in the clusters while providing single-cell resolution. The continuum equations can be viewed as a coarse-grained version of previously developed discrete models ...
متن کاملA Continuum Shell-beam Finite Element Modeling of Buried Pipes with 90-degree Elbow Subjected to Earthquake Excitations
In the current work, the seismic analysis of bent region in buried pipes is performed, and effects of soil properties and modeling methods on pipe’s response are investigated. To do this task Beam, Beam-Shell Finite Element modeling and a Continuum shell FE models of a 90 degrees elbow are employed. In the Beam model, the pipe is simulated by beam elements while combined shell-beam elements a...
متن کاملA new conforming mesh generator for three-dimensional discrete fracture networks
Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...
متن کاملComputational analysis of three-dimensional epithelial morphogenesis using vertex models.
The folding of epithelial sheets, accompanied by cell shape changes and rearrangements, gives rise to three-dimensional structures during development. Recently, some aspects of epithelial morphogenesis have been modeled using vertex models, in which each cell is approximated by a polygon; however, these models have been largely confined to two dimensions. Here, we describe an adaptation of thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2015